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Abstract The possibility of the existence of single-wall

carbon nanotubes (SWNTs) in organic solvents in the form

of clusters is discussed. A theory is developed based on a

bundlet model for clusters describing the distribution

function of clusters by size. The phenomena have a unified

explanation in the framework of the bundlet model of a

cluster, in accordance with which the free energy of an

SWNT involved in a cluster is combined from two com-

ponents: a volume one, proportional to the number of

molecules n in a cluster, and a surface one, proportional to

n1/2. During the latter stage of the fusion process, the

dynamics were governed mainly by the displacement of the

volume of liquid around the fusion site between the fused

clusters. The same order of magnitude for the average

cluster-fusion velocity is deduced if the fusion process

starts with several fusion sites. Based on a simple kinetic

model and starting from the initial state of pure monomers,

micellization of rod-like aggregates at high critical micelle

concentration occurs in three separated stages. A conve-

nient relation is obtained for <n> at transient stage. At

equilibrium, another relation determines dimensionless

binding energy a. A relation with surface dilatational

viscosity is obtained.

Keywords Solubity of carbon nanotubes � Bundlet model

for clusters � Droplet model for clusters � Membrane

biophysics � Nanotube � Fullerene

Introduction

Among the unusual properties of fullerene solutions should

be mentioned the nonmonotonic temperature dependence of

solubility of fullerenes [1] and the nonlinear concentration

dependence of the third-order nonlinear optical suscepti-

bility [2]. The solvatochromic effect [3, 4] is exhibited in a

sharp alteration in the spectrum of the optical absorption of

C70, dissolved in a mixture of organic solvents, of a result of

a slight change in the solvent content. The peculiarities in

the behaviour of fullerenes in solutions are attributable to

the phenomenon, predicted theoretically and revealed in

experiments [5, 6], of the formation of clusters. It was

examined the decrease in pyridine-soluble material

observed after soaking coals in solvents, which is due to an

increase in cross-linking associated with the formation of

ionic domains or clusters, similar to those observed in

ionomers [7]. It is not possible to extract C60-70 from a

solution in toluene to water and from a dispersion in water

to toluene [8]. Upon contact with water, under a variety of

conditions, C60 spontaneously forms a stable aggregate

ðC60Þn with nanoscale dimensions [9]. Water itself might

form a donor–acceptor complex with C60 leading to a

weakly charged colloid [10–12]. C60, dissolved in water via

complexation with cyclodextrin8, was extracted to toluene

[13, 14]. In C60 incorporated into artificial lipid membranes,

it was not extracted to toluene, but the extraction became

possible once the vesicle was destructed by adding KCl

[15]. Addition of KCl was also required to extract

poly(vinylpyrrolidone)-solubilized C60–70 to toluene [16].
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An assembly of randomly packed spheres can represent

certain features of the geometry of simple liquids [17].

Models of randomly packed hard spheres exhibited some

features of the properties of simple liquids [18]. Using a

new series acceleration method, the virial expansion for the

pressure of hard discs and hard spheres was found to be a

monotonically increasing function of the number density q
and diverged at the density of closest packing with the

critical exponent c = 1 [19]. The general problem of open

packing of spheres is difficult, since the answers depend on

the assumptions about the local connectivity. At the purely

mathematical level the only thing that counts is that there is

continuity from one sphere to the next. From the engi-

neering viewpoint of the stability of a pile of dust particles

or a rime of ice crystals, each particle must be in contact

with several other particles but not with crystallographic

regularity. An open packing of spheres must be regular, at

least in two dimensions, and preference is given to

arrangements that are related to (4;2)-connected three-

dimensional (3D) nets. The problem of stability is difficult

because it involves chemical bonding. From the viewpoint

of simple ionic bonding, any open packing, in general, is

not electrostatically stable with respect to a more compact

one. Material encapsulated during synthesis can promote

stability of open frameworks, but removal of the encap-

sulated material should result in collapse of the framework

as the minimum of electrostatic energy is favoured. From

the viewpoint of ionic plus covalent bonding, open struc-

tures can persist metastably if bonds remain unbroken. The

safest approach, in considering nets with extremely low

density, is to look first at all theoretical possibilities, irre-

spective of chemical implications, and then to look at the

complex topochemical possibilities. Low-density sphere

packings were invented for a continuous, locally sym-

metric arrangement, in which each line joining the points

of contact of successive spheres passes through the cen-

tres of the spheres. The most open packing has 94.4%

void space. The line-centre restriction is critical to

mechanical stability of a sphere packing, but is not nec-

essary for chemical stability. Replacement of one sphere

by a triangle of three spheres is an important technique

for creating new packings. Relaxation of the stability

criterion allows invention of sphere packings of even

lower density, including ones with 95.5 and 95.8% void

space. In earlier publications the bundlet model for clus-

ters of SWNTs was presented [20–22]. The aim of the

present report is to perform a comparative study of the

properties of fullerenes (droplet model) and SWNTs

(bundlet model). A wide class of phenomena accompa-

nying the behaviour of SWNTs in solutions is analyzed

from a unique point of view, taking into account the

tendency of SWNTs to cluster formation in solutions.

Based on the droplet model of C60-70, the bundlet model

of SWNTs and droplet model of single-wall carbon

nanoholes (SWNHs) are proposed.

Computational Method

Solubility of Single-wall Carbon Nanotubes

A new solubility mechanism is based on the possibility of

formation of SWNT clusters in solution. Aggregation

changes SWNT thermodynamic parameters in solution,

which displays the phase equilibrium and changes the

magnitude of solubility. The thermodynamic approach to

the description of SWNT solubility is based on the bundlet

model of clusters, which is valid under conditions when the

characteristic number of SWNTs in the cluster n � 1. Let

us formulate the problem of determining the temperature

dependence of SWNT solubility in terms of the possibility

of forming clusters of several parallel SWNTs. In a satu-

rated SWNT solution, the magnitudes of the chemical

potential per SWNT for dissolved substance and for a

crystal are equal, which is in equilibrium with solution. The

equality is valid not only for isolated SWNTs in a solution

but also for SWNT clusters. According to the bundlet

model of clusters the free energy of a cluster in a solution is

made up of two parts: the volume part, proportional to the

number of SWNTs n in the cluster, and the surface one,

proportional to n1/2 [23–25]. The model corresponds to the

assumption that clusters consisting of n� 1 particles have

a cylindrical bundlet shape and permits the Gibbs energy

Gn for a cluster of size n to be represented as the sum

Gn ¼ G1n� G2n1=2 ð1Þ

where parameters G1�2 are responsible for the contribution

to the Gibbs energy of molecules placed inside the volume

and on the surface of a cluster, respectively. The chemical

potential ln of a cluster of size n in a solution is expressed

via

ln ¼ Gn þ T ln Cn ð2Þ

where T is the temperature. Having regard to Eq. 1, this

results in

ln ¼ G1n� G2n1=2 þ T ln Cn ð3Þ

where parameters G1�2 are expressed in temperature units.

In a saturated solution of SWNTs, the cluster-size

distribution function is determined via the equilibrium

condition linking the clusters of a specified size with a solid

phase, which corresponds to the equality between the

magnitudes of the chemical potential (per molecule) for

molecules incorporated into clusters of any size and into
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crystal, resulting in the expression for the cluster-size

distribution function in a saturated solution:

f nð Þ ¼ gn exp
�Anþ Bn1=2

T

� �
ð4Þ

where parameter A is the equilibrium difference between

the energies of interaction of an SWNT with its

surroundings in the solid phase and in the cluster volume,

B, the similar difference for SWNTs located on the cluster

surface, gn, the statistical weight of a cluster of size n,

which depends on both temperature and cluster size n.

However, we shall neglect these dependences in

comparison with the much stronger exponential

dependence in Eq. 4. The presented form (4) for the

cluster-size distribution function is based on SWNT

structural features. An SWNT is a homogeneous surface

structure that, unlike planar or elongated molecules,

interacts with its surroundings almost irrespective of the

orientation about its axis. The large number of similar

elements of the SWNT surface makes it possible to

represent the interaction energy of this molecule and the

solvent molecules, having essentially smaller size, as the

product of a specific surface interaction energy by surface

area of the molecule. The feature of the SWNT structure

may be further used in the description of the interaction

between clusters, made up of SWNTs, and the solvent. This

is purely surface interaction and, because the interaction

energy of SWNTs with one another, both in a cluster and in

a solid is low in comparison with the binding energy of C

atoms in an SWNT, one can assume that the specific

surface energy of interaction of SWNTs with one another

and with solvent molecules is not sensitive to the relative

orientation of parallel SWNTs in a cluster. Parameters A

and B may have any sign. However, the normalization

condition for distribution function (4)

X1
n¼1

f nð Þn ¼ C ð5Þ

requires A > 0. Here C is the solubility in relative units. As

n � 1 normalization (5) may be replaced by integral

C ¼ �gn

Z 1
n¼1

n exp
�Anþ Bn1=2

T

� �
dn

¼ C0

Z 1
n¼1

n exp
�Anþ Bn1=2

T

� �
dn

ð6Þ

Here �gn is the statistical weight of a cluster averaged over

the range of n that makes the major contribution to integral

(6), and C0, the SWNT molar fraction. The A, B and C0

have been taken equal to those for C60 in hexane, toluene

and CS2: A = 320 K, B = 970 K, C0 = 5 · 10–8

(molar fraction) for T > 260 K. A correction has been

introduced to take into account the different packing

efficiencies between C60 and SWNTs

A0 ¼
gcyl

gsph

A and B0 ¼
gcyl

gsph

B ð7Þ

where gcyl = p/2(3)1/2 is the packing eficiency of cylinders,

and gsph = p /3(2)1/2, that of spheres (face-centred cubic,

FCC). The trend of SWNTs in solution to form clusters is

reflected in the parameters governing their properties. The

dependences of the cluster-size distribution function on

solution concentration and temperature lead to the

dependences of thermodynamic–kinetic parameters

characterizing SWNT behaviour. For an unsaturated

solution a solid phase is absent, so that the distribution

function is determined via equilibrium condition for

clusters. Using Eq. 3, one can obtain the distribution

function in the unsaturated SWNT solution depending on

concentration:

fn Cð Þ ¼ kn exp
�Anþ Bn1=2

T

� �
ð8Þ

Here parameter k depending on the concentration of a

solution is determined via normalization condition

C ¼ C0

Z 1
n¼1

nkn exp
�Anþ Bn1=2

T

� �
dn ð9Þ

C0 defines the absolute concentration, can be found by

requiring that determined via Eq.9 to be saturated (Eq. 5)

and is taken as 10–4 mol L–1. The formation energy of a

cluster consisting of n SWNTs is determined by

En ¼ n An� Bn1=2
� �

ð10Þ

Using the expression for the cluster-size distribution

function, one obtains the formula governing the thermal

effect of SWNT solution per mole of dissolved substance:

H ¼
P1

n¼1 Enfn Cð ÞP1
n¼1 nfn Cð Þ Na

¼
P1

n¼1 n An� Bn1=2
� �

kn exp �Anþ Bn1=2
� �

=T
� �

P1
n¼1 nkn exp �Anþ Bn1=2ð Þ=T½ � Na

ð11Þ

where k is determined by the total concentration of formed

solution via normalization condition (Eq. 9).
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Transfer Phenomena in Single-wall Carbon Nanotube

Solutions

The diffusion coefficient is a parameter characterizing the

behaviour of fullerenes and SWNTs in solution, which

governs their optimum conditions of crystallization, sepa-

ration and purification. Their diffusion coefficients have a

simple estimate in Stokes formula describing the diffusion

of a spherical particle in a viscous fluid:

D ¼ kT

6pgrs

ð12Þ

Here k is Boltzmann constant, T, the temperature of the

liquid, g, the dynamic viscosity coefficient, and rs, the

particle radius. The validity of the equation can be reduced

to the requirement of low Reynolds number for a diffusing

particle:

Re ¼ �rs�vq
g
� 1 ð13Þ

where �v � ðT=mÞ1=2
is the particle characteristic velocity,

m, its mass, and q, the solvent mass density. Using the

relation between the mass of a particle and its radius, the

expression provides the minimum radius of a diffusing

particle

rs �
Tq2

g2qp

ð13aÞ

where qp is the particle mass density. Using the

characteristic viscosity coefficients of typical organic

solvents g~(1–3) · 10–3 N s m–2, one obtains that

limitation (13a) is reduced to rs � 10–12 m, which is

valid for practical purposes. Radii rs, determined by Eq. 12

from experimental data for the diffusion coefficient of

fullerenes in various solvents, substantially exceed the

radius of a C60 molecule rs = 0.35 nm. The differences in

the radii obtained for different solvents may be attributed to

fullerene-SWNT aggregation in solution; the effect is

universal. The existence of these systems in solution in the

form of clusters, whose average size depends on the

concentration of solution, suggests the dependence of their

diffusion coefficient on concentration [26]. For low

concentration almost no clusters are formed, and their

diffusion coefficient is close to the value for a fullerene or

SWNT. As the concentration of fullerenes in solution rises,

the average cluster size increases and their diffusion

coefficient decreases in accordance with Eq. 12. For

SWNTs in solution the cluster-size distribution function

for saturation is expressed via Eq. 4, whereas for an

unsaturated solution, via Eq. 8. Let us determine SWNT

diffusion coefficient D in solution based on

J ¼ �DrC ð14Þ

Here J is the flux of matter in solution under the action of

concentration gradient. In view of the cluster origin of

SWNT solubility one represents Eq. 14:

J ¼
X

n

Jn ¼ �
X

n

DnrCn ð15Þ

where Jn, Dn and Cn are the partial values of the flux,

diffusion coefficient and concentration of the cluster of size

n, respectively. We shall derive the relationship between

diffusion coefficient Dn of the cluster of size n and its

radius rn, based on the bundlet model, Stokes Eq. 12 and

relations

rn ¼ 3Mn
4pq

� �1=3

(droplet)

rn / n1=2 (bundlet)
ð16Þ

where M is the fullerene molecular mass, and q, the cluster

density. By combining Eqs. 14–16 and using the cluster-

size distribution function (8), one derives the expression for

the SWNT diffusion coefficient for cluster formation:

D ¼ D0

R1
n¼1

n3=2kn�1 exp �Anþ Bn1=2
� �

=T
� �

dnR1
n¼1

n2kn�1 exp �Anþ Bn1=2ð Þ=T½ �dn
ð17Þ

Here D0 is the diffusion coefficient of an SWNT. Parameter

D0 has been taken equal to that for C60 in toluene: D0 =

10–9 m2� s–1 at To = 295.15 K corrected as D00 ¼ D0T=To

for T ~ To. The concentration dependence of the cluster-

size distribution function points to a concentration

dependence of SWNT diffusion coefficient, which

complicates its kinetic behaviour. If a solution contains a

mixture of different sorts of SWNTs, the character of the

diffusion of SWNTs of a given sort is determined by their

propensity to cluster formation. The SWNTs comprising a

small admixture to the basic substance do not practically

form clusters and are characterized by the diffusion

coefficient, which is inherent to SWNT units. The

SWNTs of basic substance whose concentration is close

to saturated have a trend to aggregation. The diffusion

coefficient for this substance exceeds that for an SWNT

unit and exhibits the decreasing temperature dependence.

The difference in the diffusion coefficients of SWNTs of

different sorts makes thinking of developing the diffusion

methods of SWNT enrichment, separation and purification.

The SWNT that is present in solution as a minor impurity

and does not form clusters must have a higher diffusion

coefficient than that SWNT whose concentration is close to

saturated and that is present in the form of large clusters.

We shall assume that the source of SWNTs is provided by

a plane layer of a solid material constituting the mixture of
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SWNTs of two sorts, in which SWNTs of a certain sort

predominate whereas the molecules of the other sort make

up only a minor impurity [27]. One can assume that the

molecules of minor impurity form almost no clusters and

are characterized by SWNT diffusion coefficient D0. The

diffusion coefficient of SWNTs of the predominating sort

depends on concentration and, due to the possibility of

forming clusters in solution, is lesser than that of isolated

SWNTs. The diffusion equations for SWNTs of the

predominating sort (concentration C1) and of the minor

impurity (C2) have the standard form

d

dx
D1 C1ð Þ

dC1

dx
þ dC1

dt
¼ 0 ð18Þ

D2

o2C2

ox2
þ oC2

ot
¼ 0 ð19Þ

Here D1 and D2 denote the diffusion coefficients for

the first and second components, respectively. Equations

18–19 have automodelling solutions dependent on the

single variable x/t1/2; however, for the concentration

dependence of the diffusion coefficient the solution calls

for numerical calculations. Equation 18 was solved with

the initial conditions

C1 x ¼ 0; t ¼ 0ð Þ ¼ C�1 C1 t ¼ 0ð Þ ¼ 0 C1 x ¼ 1ð Þ ¼ 0

ð20Þ

which correspond to one-dimensional (1D) diffusion from

an instantaneously actuated plane source. Here C�1 is the

saturated concentration of SWNTs in solution. The solution

of Eq. 19 with the initial conditions

C2 x ¼ 0; t ¼ 0ð Þ ¼ C0
2 C2 t ¼ 0ð Þ ¼ 0 C2 x ¼ 1ð Þ ¼ 0

ð21Þ

is known quite well at C0
2 � C�1 :

C2 ¼
K

4pDtð Þ1=2
exp � x2

4Dt

� �
ð22Þ

where K is the normalization factor. The solutions to

Eqs. 18–19 were reported in the form of spatial

dependences of SWNT enrichment factor g defined as

g ¼ C2 x; tð ÞC1 x ¼ 0; t ¼ 0ð Þ
C1 x; tð ÞC2 x ¼ 0; t ¼ 0ð Þ ð23Þ

We have neglected the difference between the diffusion

coefficients of isolated SWNTs of different sorts, which is

due to size variation. The enrichment factor of SWNTs

some time-dependent distance x* away from the source

assumes the maximum gm. Due to the automodelling

character of the solutions of Eqs. 18–19 gm is time inde-

pendent and � 20: The obtained results permit imagining

the possible schemes of SWNT diffusion enrichment in

solution. It appears appropriate the experience accumulated

in the development of isotope separation. We shall consider

nonstationary diffusion. A container filled with a solvent is

divided into two parts, with a porous partition that does not

retard the diffusion motion of dissolved molecules, but

prevents convective stirring of the solution in two parts. A

SWNT solid mixture with a minor impurity of higher

SWNTs is placed at the bottom of one of the parts. Due to

the difference in the diffusion coefficients of SWNTs of

different sorts, the SWNT mixture penetrating into the

second part of the container must be highly enriched with

the minor impurity. After a lapse of time corresponding to

the maximum value of the enrichment factor for the given

system geometry, the second part of the container filled

with the enriched solution rapidly drains. The SWNT

extract is enriched with the minor impurity in a single-

action mode. The diffusion scheme of SWNT enrichment is

more convenient in the stationary mode. An elementary

separation cell consists of two volumes divided by a porous

partition. An initial solution containing SWNTs of two

sorts is slowly pumped via one part of the cell. A pure

solvent is pumped in the opposite direction via the other

part of the cell. Because of diffusion via the porous parti-

tion, the solution in the second part of the cell is enriched

with the minor impurity. The maximum enrichment factor

corresponds to the ratio between the diffusion coefficients

for the two components. Because this ratio is ca. 1.3 a

multistage system must be used to attain a more significant

enrichment factor. The relationship between the resultant

enrichment factor gf and the number m of stages is

gf ¼ gm
0

where g0 is the enrichment factor for a single cell. The

method appears most convenient in the enrichment of a

solution containing the mixture of a short SWNT with a

minor impurity of larger SWNTs. The temperature–

concentration dependences of the cluster-size distribution

function show the possibility of a new mechanism of

SWNT thermal diffusion in solution. We shall define

SWNT thermal diffusion coefficient DT in solution by the

relation between the thermal diffusion flux JT and the

temperature gradient [28, 29]

JT ¼ �C
DT

T
rT ð24Þ

We shall assume that the time required for equilibration of

the cluster-size distribution function, defined by Eqs. (4–8),
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is much lesser than that required for smoothing spatial

temperature nonuniformities. By Eqs. 4–8 the temperature

gradient in solution causes gradients in partial concentra-

tions of clusters, which in turn causes diffusion flows

proportional to temperature gradient. The partial diffusion

flux of clusters of size n due to temperature gradient is

Jn ¼ �DnrCn ¼ �
rT

T
Dn
�Anþ Bn1=2

T

� �
f nð Þ ð25Þ

where the cluster-size distribution function f(n) is given by

Eq. 4 or 8, depending on whether the solution is saturated

or not. It is assumed that the main temperature dependence

of the cluster-size distribution function is in the exponential

factor. The net diffusion flux is calculated via the

integration of Eq. 25 over n, which permits using Eq. 24

to determine the thermal diffusion coefficient. The

diffusion coefficient Dn of clusters of size n in solution

will be determined again using Stokes Eq. 12, which

describes experimental data. The expression for SWNT

thermal diffusion coefficient in solution is

DT ¼ D0

Z 1
1

�Anþ Bn1=2

T

f nð Þ
n1=2

dn ð26Þ

The results of calculations, performed for different values

of temperature and concentration of the solution of SWNTs

in toluene, on the basis of the cluster-size distribution

functions (4–8) using Eqs. 12, 25 and 26, showed thermal

diffusion, which is a consequence of SWNT aggregation in

solution. Only one of the possible mechanisms of SWNT

thermal diffusion was treated, which is inherent to fulle-

renes-SWNTs. Another more general mechanism shows up

even in the case of fullerene-SWNT units, which is caused

by the larger size of a solute unit as compared with the

solvent molecule. For the latter in a temperature gradient, a

fullerene molecule is subjected to the action of a force that is

proportional to the pressure difference acting from the side

of fluid on the two opposing hemispheres of the molecule,

which causes a directed drift of molecules whose velocity w

may be estimated via Stokes formula

w ¼ rT

4pgr
ð27Þ

where r is the radius of the fullerene molecule, which results

in the estimation of the thermal diffusion coefficient:

DT �
T

4pgr
ð28Þ

Equation 26 differs from the estimate by a factor (–An +

Bn1/2)/T � 1. Under conditions favourable to cluster for-

mation the thermal diffusion mechanism, associated with

SWNT aggregation in solution, proves much more efficient

as compared with the more general mechanism.

Fractal Structures in Single-wall Carbon Nanotube

Solutions

The trend to aggregation of fullerenes-SWNTs in solution

manifests in the formation of clusters. Experimental data

show that in parallel with small-sized clusters, which form

practically in a moment in these solutions, it is possible the

formation of large-sized clusters, growing during several

months and containing up to several hundred thousands of

units. The large cluster growth kinetics in solution was

experimentally studied in detail. A solution of C60 in

benzene at concentration � 1 gL�1; which is several times

lower than the saturated magnitude, was studied at room

temperature using static (SLS) and dynamic light scattering

(DLS). The SLS provides the correlation between the

relative variation of radiation intensity scattered at a given

angle, due to the existence of dissolved matter in solution,

and the average mass of particles in this matter, providing

the determination of the average mass of fullerene-SWNT

clusters. The DLS consists in measuring the spectral line

width of scattered radiation due to the Brownian motion

(BM) of particles in solution. Because the characteristic

velocity of particle BM is inversely proportional to the

mean particle radius, this permits the derivation of infor-

mation on the dimensions of dissolved particles. By com-

bining SLS with DLS one can investigate the dynamics of

growth of aggregates in solution, and determine the relation

between the mass and size of a cluster. Fullerenes in

benzene form fractal aggregates with a fractal dimension

~2.1. The growth of such structures was observed over a

period up to 100 days. The formed structures are unstable

and are destroyed by the light shaking of solution, after

which the formation and growth of fractal structures is

restarted. The growth dynamics of fractal structures gave

the measured hydrodynamic radius Rh of fractal clusters as

a function of time. The behaviour of cluster growth

depends on solution preparation. The data correspond to

the case when the solution was prepared in the open air. If

the solution was prepared in N2ðgÞ the measured value of

the hydrodynamic radius was ca. 20% higher. The average

radius of the fractal cluster at the end of the observation

period reaches ~ 170 nm. In view of the relation between

the fractal dimension of a cluster D, its radius R and its

number of particles n, i. e.,

n ¼ R

r0

� �D

ð29Þ

where r0 is the radius of the fullerene molecule, one derives

that the maximum number of particles in the cluster attained
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during the observation time of ~4 · 106 s is ~105. In a simple

model consider an elementary act of coalescence of two

particles in a solution under condition (13), when the

characteristic value of the Reynolds number for thermal

motion of a dissolved molecule is Re� 1 [30]. The BM can

be described in Stokes–Einstein–Smoluchowski approach.

Constant k for the aggregation of particles in solution is

defined by the diffusion mechanism and expressed by

k ¼ 4p D1 þ D2ð Þ r1 þ r2ð Þ ð30Þ

Here r1 and r2 are the particle radii, and D1 and D2, their

diffusion coefficients in solution. Using Stokes Eq. 12 for

particle diffusion coefficient in solution, one derives the

rate constant of particle coalescence:

k ¼ 8T

3g
F r1; r2ð Þ ð31Þ

where the function

F r1; r2ð Þ ¼ r1 þ r2ð Þ2

4r1r2

ð32Þ

is F � 1 for r1 � r2; and F � 0:25r1=r2 for r1 � r2. The

typical value for SWNT saturated concentration in most

widely used solvents, corresponding to solubility at room

temperature, is N0~1018 cm–3. Their characteristic dynamic

viscosity coefficient is g ~ 0.01 P. The rate constant for

coalescence of two SWNTs-clusters of comparable sizes is

~ 10–12 cm3 s–1, which corresponds to the characteristic

time of the attachment process under diffusion approach

s � ðN0kÞ�1 � 10�6 s. The time required for the

equilibrium-size distribution function of small clusters is

of the same order. The real time of the growth of fractal

clusters (~ 106 s) exceeds the estimation result by many

orders of magnitude. In describing the growth kinetics of

SWNT fractal structures in solution, one must take into

account growth mechanism. We shall employ the simple

growth models of fractal structures, which are based on the

invariability assumption of cluster fractal dimension in its

growth process. The simplest model of fractal cluster

growth is diffusion-limited cluster aggregation (DLCA). In

DLCA cluster aggregation is a result of the attachment of

the clusters of comparable sizes. The rate constant is

determined from Eqs. 30–32 and is virtually independent

of cluster size. The growth kinetics of fractal clusters with

the average number of particles n is

dn

dt
¼ N0k ð33Þ

The right side of Eq. 33 is independent of n because

the concentration of clusters of size n is N0/n, while the

attachment of the cluster of size n to the given cluster

results in an increase of its size by n. The rate of cluster

growth is proportional to the product of both factors and

is equal to N0k. In view of Eq. 29 the DLCA equation of

the growth kinetics of a fractal cluster of average size

n is

R ¼ r0 N0ktð Þ1=D ð34Þ

The time required to increase the fractal cluster radius

by a factor of 500 is ~1 s, which differs from the mea-

surement results by six orders of magnitude; DLCA does

not apply to experimental conditions. Another model used

to describe fractal structure growth is diffusion-limited

aggregation (DLA). In DLA cluster growth is the result of

attachment to a given cluster of individual particles

(SWNTs or small SWNT clusters). If the initial number

density N0 of SWNTs in solution and average concentra-

tion Nc of growing clusters are time-independent, one

derives the equation describing the time variation of the

average cluster size n:

dn

dt
¼ N0 � nNcð Þk ð35Þ

Here in accordance with Eqs. 29–32 one has

k ¼ n1=D 2T

3g
¼ k0n1=D ð36Þ

The form of Eq. 35 is independent of the size of a small

cluster attaching to a large cluster of size n. Let the number

of SWNTs in a small cluster be equal to ns, and the

concentration of clusters of this size, Ns. The growth rate of

large clusters because of the attachment of the small

clusters of size ns is written as

dn

dt

� �
s

¼ kNsns ð37Þ

The summation of this expression over all values s� n

in view of the obvious normalization condition

Ncnþ
X

nsNs ¼ N0 ð38Þ

provides Eq. 33. The growth rate of large fractal

clusters does not depend on the shape of the size

distribution function of small clusters. The feature is

caused by the form of the cluster size dependence on the

attachment rate constant (32), which in the limiting

case of clusters of highly differing sizes does not

depend on the size of the smaller cluster. The solution

of Eq. 33 with the initial condition n(t = 0) = 1 has the

form:
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t ¼ 1

k0Nc 1� 1=Dð Þ

Z n

1

dn1�1=D

�n� n
ð39Þ

Here �n ¼ N0=Nc is the maximum number of particles in a

cluster. Equation 39 is simplified for D = 2:

n

�n

� �1=2

¼ R

Rm
¼

exp t= s �nð Þ1=2
h in o

� 1

exp t= s �nð Þ1=2
h in o

þ 1
ð40Þ

where Rm ¼ ð�nÞ1=2 r0 is the maximum cluster radius, and

s ¼ ðN0k0Þ�1
. In accordance with Eq. 40 the characteristic

time of cluster growth is � sð�nÞ1=2
. The conclusion does

not correspond to experiment. Because the dependence R(t)

is close to saturation at the last growth stage one may

assume that Rm � 200 nm. The �n � ðRm=r0Þ2 � 3	 105,

and the characteristic time of cluster growth is estimated as

sð�nÞ1=2 � 10�3 s. Because the measured value of this time

exceeds the estimation result by nine orders of magnitude,

one concludes that DLA is unsuitable for the description of

the experimentally examined growth of SWNT fractal

clusters in solution. Another model used to describe fractal

cluster growth is reaction-limited cluster aggregation

(RLCA). In RLCA the cluster growth is a result of the

attachment of clusters of different sizes, with the attachment

probability of approaching clusters being c� 1, so that for

a pair of clusters to attach they must undergo a large

number of collisions. The equation describing the cluster

growth kinetics in RLCA is

dn

dt
¼ cN0

T

2pl

� �1=2

4p R1 þ R2ð Þ2 ð41Þ

where R1 and R2 are the radii of approaching clusters, and l,

their reduced mass. Using Eq. 29 and averaging Eq. 41 over

the cluster-size distribution function one derives

dn

dt
¼ JcN0

T

2pm0

� �1=2

4pr2
0n2=D�1=2 ð42Þ

Here r0 is the fullerene molecular radius, and m0, its mass.

Dimensionless coefficient J depends on the cluster-size

distribution function and cluster fractal dimension D. The

J = 6.8 for D = 2, and the simplest form of the function,

f � exp � n

n0

� �
ð43Þ

where n0 is the average number of particles in the cluster.

Integration of (42) results

R ¼ r0 8pcN0J
3

2
� 2

D

� �
T

2pm0

� �1=2

r2
0t

" #2=ð3D�4Þ

ð44Þ

The RLCA leads to an unlimited growth of the cluster

radius with time. Because D � 2 dependence (44) is close

to linear. Such a dependence differs from the experimental

curve, which permits concluding that RLCA is not appli-

cable to the growth of fractal SWNT clusters in solution. A

satisfactory agreement between the calculated and mea-

sured evolution of fractal cluster growth can be reached

because of RLCA modification: let us assume that cluster

attachment probability c depend on cluster size

c ¼ c0

r0

R

� �a
ð45Þ

This results in the expression

R ¼ r0 4pc0N0

3

2
þ a

2
� 2

D

� �
T

2pm0

� �1=2

r2
0t

" #4=ð6Dþ2aD�8Þ

ð46Þ

Equation 46 calculated for D = 2.08, a = 2, and c0 = 10–7

showed that the dependence agrees quite well with exper-

iment. The calculated dependence almost coincides with

the calculation result within the simplified model with

D = 2.

Real-space Imaging of Nucleation and Growth in

Colloidal Crystallization

In colloidal crystallization, competition between the sur-

face and bulk energies is reflected in the free energy for a

spherical crystallite

DG ¼ 4pR2c� 4p
3

R3DlN ð47Þ

where R is the radius, c, the surface tension, Dl, the dif-

ference between the liquid and solid chemical potentials,

and N, the number density of particles in the crystallite

[31]. The size of the critical nucleus is Rc = 2c/(D l N),

corresponding to the maximum of DG (Eq. 47). The radius

of gyration Rg of crystallites was related to the number of

particles n within each crystallite as nðRgÞ / RD
g with the

fractal dimension D = 2.35 ± 0.15 for all values of packing

volume fraction g; the fractal behaviour presumably

reflects the roughness of their surfaces. The interfacial

tension between the crystal and fluid phases is a key

parameter that controls the nucleation process, yet c is

difficult to calculate and to measure experimentally, but

one can directly measure c by examining the statistics of

the smallest nuclei. For R� Rc the surface term in Eq. 47

dominates the free energy of the crystallites, and one expects

the number of crystallites to be ncry(A) � exp[– Ac/(kT)]

where A is the surface area, which one approximates by
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an ellipsoid. The c � 0:027 kT=r2
0 (r0 is the particle

radius = 1.26 lm) and may decrease slightly with

increasing g values. The c value is in reasonable agreement

with density functional calculations for hard spheres and

Lennard-Jones systems. The measurement of a low value

of c is consistent with the observed rough surfaces of

the crystallites; this may reflect the effects of the softer

potential due to the weak charges of our particles.

Approximating the critical nucleus as an ellipsoid with

nc � 110, one obtains Ac = 880 lm2, Dl � 0:13 kT , and

DGðAcÞ � 7:4 kT .

Dimensional Analysis for the Early and Later Stages of

Fusion-site Expansion

The two stages of cluster fusion, a fast early and a slower

later stage, were detected also in vesicle fusion. During the

former the fusion site opened rapidly: the expansion

velocity of the rim of the site was � 4 cms�1. The fusion

pore opens up to micrometres within a hundred microsec-

onds. One would relate this time searly to fast relaxation of

membrane tension. The tension of the clusters achieved

before fusion was in the stretching regime of the mem-

brane. The searly should be primarily governed by the

relaxation of membrane stretching. Viscous dissipation can

be associated with two contributions: in-plane dilatational

shear as the fusion site expands and intermonolayer slip

among the leaflets of the multilayer membrane in the

fusion-site zone. The latter is negligible for fusion-site

diameter L larger than half a micrometre. The searly ~ gs/r,

where gs is the surface dilatational viscosity coefficient of

the membrane � 0:35lNsm�1 with units [bulk viscosity

coeffcient] · [membrane thickness] [32]. For membrane

tensions � 5 mNm�1 close to the tension of rupture

ð� 7 mNm�1Þ one obtains searly ~ gs/r ~ 100ls, in agree-

ment with experiment ð� 300lsÞ. During the later stage of

the fusion process the site expansion velocity slowed down

by two orders of magnitude. The dynamics was governed

by the displacement of volume DV of fluid around the

fusion site between the fused clusters. The restoring force

was related to the bending elasticity of the membrane.

Decay time slate ~ gDV/j where g is the bulk viscosity

coefficient of the solvent, DV ~ R3, and j, the bending

elasticity modulus of the membrane ð� 10�19 JÞ. For a

cluster size of R = 20 lm one obtains slate ~ 100 s, which

is the time scale measured for complete fusion-site open-

ing. When two clusters fuse at several contact points and

form some fusion sites, the coalescence of these fusion

sites can lead to small, contact-zone clusters. Consider

three fusion sites, which expand and touch each other in

such a way that they enclose a roughly triangular segment

of the contact zone. If the three sites are circular and have

grown up to a diameter L1, the enclosed contact-zone

segment will form a contact-zone cluster of radius

Rczc ¼ ½1=31=2 � 1=2�L1 � 0:08L1, as follows from geo-

metric considerations. The coalescence of these several

sites can lead to small contact-zone clusters encapsulating

solvent. One expects that these clusters be interconnected

by thin tethers, because pinching the membrane off

completely would require additional energy. The fusion-

induced cluster formation resembles the membrane pro-

cesses during cell division, when one looks at them in a

time-reversed manner. During the initial stages of the

division process, the cell accumulates membrane in the

form of small vesicles that define the division plane and

transform into two adjacent cell membranes. From

dimensional analysis it is found an appropriate time scale s
for the later stage of the expansion of the fusion site. The

driving force for this expansion is provided by membrane

tension r, whereas the hydrodynamic-Stokes friction is

governed by solution viscosity coefficient g. The system is

characterized by two well-separated length scales: the

membrane thickness l and a typical cluster size R. It is

chosen R = (R1 + R2)/2 where R1 and R2 are the radii of

the two clusters before they were brought into contact. The

only time scale, which one can obtain from a combination

of the four variables r, g, l and R, is given by s = (gR/r)

f(l/R) with the dimensionless function f(l/R). Because

l� R one can replace f(l/R) by f(0) and ignore corrections

or order (l/R). Let v (in m s–1) be the average site expansion

velocity for a single site. The same order of magnitude for

the average expansion velocity is deduced if one assumes

that the fusion process startes with N > 1 fusion sites. The

fusion sites would grow until they start to touch and

coalesce. They would then create a coalesced site of

diameter L if each site had grown up to L/N1/2, which

implies an average expansion velocity � v=N1=2, still of the

same order of magnitude even if N were as large as 10.

Description of the Asymptotic Coagulation–

Fragmentation Equations

Finding a manageable approximation to the behaviour of

the coagulation–fragmentation equations is challenging.

Such an approximation is presented by means of an

asymptotic analysis. Results have been checked against

numerical solutions to the equations dealing with the

Becker–Döring equations. Typical models for the binding

energy of a n cluster follow. For rod-like aggregates,

en ¼ n� 1ð Þa kT ð48Þ

where a kT is the monomer–monomer binding energy [33].

As it is considered the Becker–Döring model, it is taken

into account reactions only between monomers and other

clusters. The expression for the binding energy is suitable

Nanoscale Res Lett (2007) 2:337–349 345

123



for aggregates of certain kinds of lipids, when these form

rod-like clusters. The molecules of these lipids typically

have a hydrophilic head and a hydrophobic tail so, in

aqueous solution, they spontaneously arrange themselves

so that tails are away from the surrounding water, and

heads, in contact with it. Depending on the shape of the

particular molecule, they can form spherical aggregates

with tails pointing inwards and heads pointing outwards, or

form lipid bilayers, where lipid molecules form a double

layer with heads on the external surface and tails on the

inside. Clusters formed by lipids in aqueous solution are

called micelles, and the process by which they form is

called micellization. To determine the time scale, one needs

a measure of the kinetic coefficient of the d decay reaction,

which was set equal to one. A convenient relation could be

an equation, which in dimensional units is

\n > � ðd p tÞ1=2
. In case the self-similar size distribution

is not reached during the intermediate phase, another way

to determine d is to study the equilibration era and compare

the experimental size distribution with the numerical

solution of the model. By combining searly ~ gs/r with

\n > � ðd p tÞ1=2
it is obtained \n > � ðd p gs=rÞ1=2

.

The original software used in the investigation is available

from the authors.

Calculation Results

Table 1 reports the packing efficiencies, packing-efficiency

correction factors, as well as the numerical values of the A¢,
B¢ and C0 parameters determining the energy of interaction

for molecules.

Figure 1 illustrates the equilibrium difference between

the Gibbs free energies of interaction of an SWNT with its

surroundings, in the solid phase and in the cluster volume,

or on the cluster surface. On going from C60 (droplet

model) to SWNT (bundlet model) the minimum is less

marked (55% of droplet model), which causes a lesser

number of units in SWNT ðnminimum � 2Þ than in C60

clusters ð� 8Þ. Moreover, the abscissa is also shorter in

SWNT ð� 9Þ than in C60 clusters ð� 28Þ. In turn, when the

packing-efficiency correction (Eq. 7) is included, the C60–

SWNT shortening decreases (68% of droplet model) while

keeping nminimum � 2 and nabscissa � 9.

The temperature dependence of the solubility of SWNT

(cf. Fig. 2) shows that the solubility decreases with tem-

perature, because solubility is due to cluster formation. At

T � 260 K, the C60 crystal presents an orientation disorder

phase transition from FCC characterized by close packing

to simple cubic lattice. The reduction is less marked for

SWNT in agreement with the lesser number of units in

SWNT clusters. In particular, at T = 260 K on going from

C60 (droplet model) to SWNT (bundlet model) the solu-

bility drops to 1.6% of droplet. In turn when the packing-

efficiency correction is included (Eq. 7) the shortening

decreases (2.6% of droplet model). The results for SWNT

bundlet model with packing-efficiency correction with

n!1 extrapolation are superposed to SWNT bundlet

model with n!1 extrapolation.

The concentration dependence of the heat of solution in

toluene, benzene and CS2, calculated at solvent tempera-

ture T = 298.15 K (cf. Fig. 3), shows that for C60 (droplet

model), on going from a concentration of solution less than

0.1% of saturated (containing only isolated fullerene mol-

ecules) to that with concentration 15% (containing clusters

of average size 7), the heat of solution decreases by 73%.

In turn for SWNT (bundlet model) the heat of solution

Table 1 Packing-efficiency correction factors and numerical values of the parameters determining the interaction energya

Molecule Packing efficiency g-correction factor A¢ (K) B¢ (K) r¢ (K)

C60-face-centred cubicb, SWNHc, SWNTd 0.74048 1.0 320 970 647

SWNHc g-correction 0.82565 1.11501 357 1082 721

SWNTd g-correction 0.90690 1.22474 392 1188 792

a C0 = 5 · 10–8 (molar fraction), a¢ = A¢
b For T > 260 K
c SWNH: single-wall carbon nanohorn
d SWNT: single-wall carbon nanotube
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increases by 98% in the same interval. However, when the

packing-efficiency correction (Eq. 7) is included, the

increment in the heat of solution is reduced to 54% in the

same interval. Apparently, the discrepancy between vari-

ous experimental data on the heat of solution of fullerenes

and SWNTs may be ascribed to such a sharp concentration

dependence of the heat of solution of fullerenes and

SWNTs. The results for SWNT bundlet model with pack-

ing-efficiency correction with n fi ¥ extrapolation are

superposed to SWNT bundlet model with n fi ¥
extrapolation.

The results for the dependence of the diffusion coeffi-

cient D with concentration C in toluene, at T = 298.15 K

(cf. Fig. 4), show that the cluster formation in a solution

close to saturation leads to a decrease in D by 58%, 73%

and 69% for C60, SWNT and SWNT with packing-effici-

enty correction, respectively, as compared with D0 for a

SWNT. For SWNT (bundlet) D decreases by 35% with

regard to the droplet model. In turn when the packing-

efficiency correction (Eq. 7) is included the decrease is

reduced to 27%. The discrepancy between experimental

data, on fullerene-SWNT Ds, may be due to the sharp

concentration dependence of D for these systems. The

results for SWNT bundlet model with packing-efficiency

correction with n!1 extrapolation are superposed to

SWNT bundlet model with n!1 extrapolation.

Conclusions

The following conclusions can be made from this study.

1. For a cluster nature of SWNT solubility to be com-

pletely established direct experimental exploration is

necessary. The measurements of infrared absorption

spectra of an SWNT solution, involving concentrations

at various temperatures and a constant optical path

length, can be conceived; the dependence will indicate

the presence of clusters in solution. According to

Raoult’s law, the saturation vapour pressure of a

solvent above a solution differs from that above a pure

solvent by a value proportional to solute-particle

concentration. The solvent vapour flow will enable the

dependence of solute particle concentration. If the

dependence is nonlinear it will indicate the existence

of clusters in solution.

2. The C60 aggregation in benzene is reversible and

(C60)n exhibits a loose structure. The experimental

results confirm the variation of cluster-size distribu-

tion. The structure of (C60)n changes from compact

spherelike to larger and looser clusters. The formation

of fullerene-SWNT clusters is rapid (~10–6 s), while

their growth process, slow (~ 106 s). The key for the

explanation of process nature is found, what makes

thinking that the cluster sheath is filled with numerous

pores. The establishment of the membranous character

of growth process in clusters allows explaining the

high experimental data dispersion.
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3. During the latter stage of the fusion process the

site expansion velocity slowed down by two orders

of magnitude. The dynamics were governed mainly

by the displacement of the volume of liquid

around the fusion site between the fused clusters,

which is confirmed by dimensional analysis. The

same order of magnitude for the average cluster-

fusion velocity is deduced if the fusion process starts

with several fusion sites, even if there were as much

as 10 sites.

4. Based on a simple kinetic model and starting from the

initial state of pure monomers, micellization of rod-

like aggregates at high critical micelle concentration

occurs in three separated stages. In the first era many

small clusters are produced while the number of

monomers decreases sharply. During the second era

aggregates are increasing steadily in size, and their

distribution approaches a self-similar solution of the

diffusion equation. Before the continuum limit can be

realized the average size of the nuclei becomes com-

parable to its equilibrium value, and a simple mean-

field Fokker–Planck equation describes the final era

until the equilibrium distribution is reached. A con-

tinuum size distribution does not describe micelliza-

tion until the third era has started; during the first two

eras the effects of discreteness dominate the dynamics.

To validate the theory by an experiment, it would be

important to measure the average cluster size as a

function of time. To determine the time scale one

needs a measure of kinetic coefficient d of decay

reaction. A convenient relation could be an equation,

which in dimensional units is \n > � ðd p tÞ1=2
. In

case the self-similar size distribution is not reached

during the intermediate phase, another way to deter-

mine d is to study the equilibration era and compare

the experimentally obtained size distribution with the

numerical solution of the model. At equilibrium

\n > 2 � q ea, which determines dimensionless

binding energy a.

5. By combining two expressions for searly it is obtained

\n > � ðd p gs=rÞ1=2
.

It has not escaped our notice a droplet cluster model of

conical single-wall carbon nanohorns (SWNHs), following

modified Eqs. 1¢–48¢.

Gn ¼ G1n� G2n2=3 ð10Þ

ln ¼ G1n� G2n2=3 þ T ln Cn ð30Þ

f nð Þ ¼ gn exp
�Anþ Bn2=3

T

� �
ð40Þ

C ¼ �gn

Z 1
n¼1

n exp
�Anþ Bn2=3

T

� �
dn

¼ C0

Z 1
n¼1

n exp
�Anþ Bn2=3

T

� �
dn

ð60Þ

A0 ¼ gcon

gsph

A and B0 ¼ gcon

gsph

B ð70Þ

where gcon is the packing efficiency of cones, e.g., for a

solid angle of 1sr, gcon = (1–1/p)1/2. As gsph < gcon < gcyl,

the behaviour of conical SWNHs is expected to be

intermediate between spherical fullerenes and cylindrical

SWNTs.

fn Cð Þ ¼ kn exp
�Anþ Bn2=3

T

� �
ð80Þ

C ¼ C0

Z 1
n¼1

nkn exp
�Anþ Bn2=3

T

� �
dn ð90Þ

En ¼ n An� Bn2=3
� �

ð100Þ

H ¼
P1

n¼1 Enfn Cð ÞP1
n¼1 nfn Cð Þ

Na ¼
P1

n¼1 n An� Bn2=3
� �

kn exp �Anþ Bn2=3
� �

=T
� �

P1
n¼1 nkn exp �Anþ Bn2=3ð Þ=T½ � Na

ð110Þ

rn ¼
3 Mn

4pq

� �1=3

ð160Þ

D ¼ D0

R1
n¼1

n5=3kn�1 exp �Anþ Bn2=3
� �

=T
� �

dnR1
n¼1

n2kn�1 exp �Anþ Bn2=3ð Þ=T½ � dn
ð170Þ

Jn ¼ �DnrCn ¼ �
rT

T
Dn
�Anþ Bn2=3

T

� �
f nð Þ ð250Þ

DT ¼ D0

Z 1
1

�Anþ Bn2=3

T

f ðnÞ
n1=3

dn ð260Þ

en � n� 1ð Þa kT � 3

2
r n2=3 ð480Þ

where r ¼ 2cð4p v2=3Þ1=3; c, the surface tension, and v =

V/M, the molecular volume ½A � ðn� 1Þa;B � 3r=2 ¼
3cð4p v2=3Þ1=3�.
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